Skip to main navigation menu Skip to main content Skip to site footer

Health Review

Vol. 1 No. 3 (2023): July/September - 2023

The role of medial prefrontal cortex in cognition, aging and Parkinson disease

DOI
https://doi.org/10.52600/2965-0968.bjcmr.2023.1.3.28-40
Submitted
June 1, 2023
Published
2023-06-30

Abstract

The prefrontal cortex (PFC) is a vital center for executive control, influencing cognition, emotion, memory, and sociability. Specifically, the medial prefrontal cortex (mPFC), a part of the PFC, monitors actions toward goals, aids decision-making, and regulates cognitive control. It assesses outcomes relative to expected rewards, selects appropriate behavior based on continuous performance analysis, and facilitates strategic adaptation in response to adverse results. Unfortunately, these cognitive functions decline with age due to changes in neuroplasticity, especially in neurodegenerative disorders like Parkinson's Disease (PD) and Alzheimer's Disease (AD). Neurodegenerative diseases disrupt normal brain activity, leading to tissue atrophy and cognitive impairment caused by degeneration and neuronal death. PD is the second most common neurodegenerative disease globally, characterized by a decline in neurotransmitters and dopaminergic neuron death in the substantia nigra, along with the presence of Lewy bodies. Recognizing these factors as risk factors for PD development is crucial. This article examines how aging affects cognitive activities regulated by the mPFC, a pivotal region for critical cognitive functions. By applying predetermined criteria, the review selects the most relevant articles to provide a comprehensive understanding of cognitive deficits mediated by the mPFC in both healthy and pathological aging.

References

  1. Carlén M. What constitutes the prefrontal cortex? Science. 2017 Oct 27;358(6362):478-482. doi: 10.1126/science.aan8868. PMID: 29074767.
  2. Xu P, Chen A, Li Y, Xing X, Lu H. Medial prefrontal cortex in neurological diseases. Physiol Genomics. 2019 Sep 1;51(9):432-442. doi: 10.1152/physiolgenomics.00006.2019. Epub 2019 Aug 2. PMID: 31373533; PMCID: PMC6766703.
  3. de Kloet SF, Bruinsma B, Terra H, Heistek TS, Passchier EMJ, van den Berg AR, Luchicchi A, Min R, Pattij T, Mansvelder HD. Bi-directional regulation of cognitive control by distinct prefrontal cortical output neurons to thalamus and striatum. Nat Commun. 2021 Mar 31;12(1):1994. doi: 10.1038/s41467-021-22260-7. PMID: 33790281; PMCID: PMC8012364.
  4. Jobson DD, Hase Y, Clarkson AN, Kalaria RN. The role of the medial prefrontal cortex in cognition, ageing and dementia. Brain Commun. 2021 Jun 11;3(3):fcab125. doi: 10.1093/braincomms/fcab125. PMID: 34222873; PMCID: PMC8249104.
  5. Ferguson BR, Gao WJ. Thalamic Control of Cognition and Social Behavior Via Regulation of Gamma-Aminobutyric Acidergic Signaling and Excitation/Inhibition Balance in the Medial Prefrontal Cortex. Biol Psychiatry. 2018 Apr 15;83(8):657-669. doi: 10.1016/j.biopsych.2017.11.033. Epub 2017 Dec 7. PMID: 29373121; PMCID: PMC5862785.
  6. Zhang Q, Weber MA, Narayanan NS. Medial prefrontal cortex and the temporal control of action. Int Rev Neurobiol. 2021;158:421-441. doi: 10.1016/bs.irn.2020.11.004. Epub 2020 Dec 15. PMID: 33785154; PMCID: PMC8875599.
  7. Bettio LEB, Rajendran L, Gil-Mohapel J. The effects of aging in the hippocampus and cognitive decline. Neurosci Biobehav Rev. 2017 Aug;79:66-86. doi: 10.1016/j.neubiorev.2017.04.030. Epub 2017 May 2. PMID: 28476525.
  8. Pal S, Tyler JK. Epigenetics and aging. Sci Adv. 2016 Jul 29;2(7):e1600584. doi: 10.1126/sciadv.1600584. PMID: 27482540; PMCID: PMC4966880.
  9. Pettigrew C, Soldan A. Defining Cognitive Reserve and Implications for Cognitive Aging. Curr Neurol Neurosci Rep. 2019 Jan 9;19(1):1. doi: 10.1007/s11910-019-0917-z. PMID: 30627880; PMCID: PMC7812665.
  10. Toledo ARL, Monroy GR, Salazar FE, Lee JY, Jain S, Yadav H, Borlongan CV. Gut-Brain Axis as a Pathological and Therapeutic Target for Neurodegenerative Disorders. Int J Mol Sci. 2022 Jan 21;23(3):1184. doi: 10.3390/ijms23031184. PMID: 35163103; PMCID: PMC8834995.
  11. Sousa NMF, Neri ACM, Brandi IV, Brucki SMD. Impact of cognitive intervention on cognitive symptoms and quality of life in idiopathic Parkinson's disease: a randomized and controlled study. Dement. Neuropsychol. 2021;15(1):51-59
  12. Erkkinen MG, Kim MO, Geschwind MD. Clinical Neurology and Epidemiology of the Major Neurodegenerative Diseases. Cold Spring Harb Perspect Biol. 2018 Apr 2;10(4):a033118. doi: 10.1101/cshperspect.a033118. PMID: 28716886; PMCID: PMC5880171.
  13. Simon DK, Tanner CM, Brundin P. Parkinson Disease Epidemiology, Pathology, Genetics, and Pathophysiology. Clin Geriatr Med. 2020 Feb;36(1):1-12. doi: 10.1016/j.cger.2019.08.002. Epub 2019 Aug 24. PMID: 31733690; PMCID: PMC6905381.
  14. Moustafa SA, Mohamed S, Dawood A, Azar J, Elmorsy E, Rizk NAM, Salama M. Gut brain axis: an insight into microbiota role in Parkinson's disease. Metab Brain Dis. 2021.
  15. Barbosa ENB, Charchat-Fichman H. Systematic review of neuropsychological instruments used in subthalamic nucleus deep brain stimulation in Parkinson's disease patients. Dement. Neuropsychol. 2019;13(2):162-171
  16. Miller EK, Cohen JD. An integrative theory of prefrontal cortex function. Annu Rev Neurosci. 2001;24:167-202. doi: 10.1146/annurev.neuro.24.1.167. PMID: 11283309.
  17. Funahashi S, Andreau JM. Prefrontal cortex and neural mechanisms of executive function. J Physiol Paris. 2013 Dec;107(6):471-82. doi: 10.1016/j.jphysparis.2013.05.001. Epub 2013 May 15. PMID: 23684970.
  18. Widge AS, Heilbronner SR, Hayden BY. Prefrontal cortex and cognitive control: new insights from human electrophysiology. F1000Research, 2019, 8, F1000 Faculty Rev-1696. https://doi.org/10.12688/f1000research.20044.1
  19. Yuan P, Raz N. Prefrontal cortex and executive functions in healthy adults: a meta-analysis of structural neuroimaging studies. Neurosci Biobehav Rev. 2014 May;42:180-92. doi: 10.1016/j.neubiorev.2014.02.005. Epub 2014 Feb 23. PMID: 24568942; PMCID: PMC4011981.
  20. Funahashi S. Working Memory in the Prefrontal Cortex. Brain Sci. 2017 Apr 27;7(5):49. doi: 10.3390/brainsci7050049. PMID: 28448453; PMCID: PMC5447931.
  21. Ray RD; Zald DH. Anatomical insights into the interaction of emotion and cognition in the prefrontal cortex. Neuroscience and biobehavioral reviews. 2012, 36(1), 479–501. https://doi.org/10.1016/j.neubiorev.2011.08.005.
  22. Forbes CE, Grafman J. The role of the human prefrontal cortex in social cognition and moral judgment. Annu Rev Neurosci. 2010;33:299-324. doi: 10.1146/annurev-neuro-060909-153230. PMID: 20350167.
  23. Chow TW. Personality in frontal lobe disorders. Curr Psychiatry Rep. 2000 Oct;2(5):446-51. doi: 10.1007/s11920-000-0031-5. PMID: 11122995; PMCID: PMC5786154.
  24. Gehring WJ, Fencsik DE. Functions of the medial frontal cortex in the processing of conflict and errors. The Journal of neu-roscience: the official journal of the Society for Neuroscience. 2001, 21(23), 9430–9437. https://doi.org/10.1523/JNEUROSCI.21-23-09430.2001.
  25. Ridderinkhof KR, Ullsperger M, Crone EA, Nieuwenhuis S. The role of the medial frontal cortex in cognitive control. Science. 2004 Oct 15;306(5695):443-7. doi: 10.1126/science.1100301. PMID: 15486290.
  26. Euston DR, Gruber AJ, McNaughton BL. The role of medial prefrontal cortex in memory and decision making. Neuron. 2012 Dec 20;76(6):1057-70. doi: 10.1016/j.neuron.2012.12.002. PMID: 23259943; PMCID: PMC3562704.
  27. Morici JF, Weisstaub NV, Zold CL. Hippocampal-medial prefrontal cortex network dynamics predict performance during retrieval in a context-guided object memory task. Proc Natl Acad Sci U S A. 2022 May 17;119(20):e2203024119. doi: 10.1073/pnas.2203024119. Epub 2022 May 13. PMID: 35561217; PMCID: PMC9171913.
  28. Parnaudeau S, Bolkan SS, Kellendonk C. The Mediodorsal Thalamus: An Essential Partner of the Prefrontal Cortex for Cog-nition. Biol Psychiatry. 2018 Apr 15;83(8):648-656. doi: 10.1016/j.biopsych.2017.11.008. Epub 2017 Nov 15. PMID: 29275841; PMCID: PMC5862748.
  29. Miyazaki K, Miyazaki KW, Matsumoto G. Different representation of forthcoming reward in nucleus accumbens and medial prefrontal cortex. Neuroreport, 2004, 15(4), 721–726. https://doi.org/10.1097/00001756-200403220-00030.
  30. Upright NA, Baxter MG. Prefrontal cortex and cognitive aging in macaque monkeys. Am J Primatol. 2021 Nov;83(11):e23250. doi: 10.1002/ajp.23250. Epub 2021 Mar 9. PMID: 33687098.
  31. Vidal-Piñeiro D, Valls-Pedret C, Fernández-Cabello S, Arenaza-Urquijo EM, Sala-Llonch R, Solana E, Bargalló N, Junqué C, Ros E, Bartrés-Faz D. Decreased Default Mode Network connectivity correlates with age-associated structural and cognitive changes. Front Aging Neurosci. 2014 Sep 25;6:256. doi: 10.3389/fnagi.2014.00256. PMID: 25309433; PMCID: PMC4174767.
  32. Houlton J, Zhou LYY, Barwick D, Gowing EK, Clarkson AN. Stroke Induces a BDNF-Dependent Improvement in Cognitive Flexibility in Aged Mice. Neural Plast. 2019 May 5;2019:1460890. doi: 10.1155/2019/1460890. PMID: 31191635; PMCID: PMC6525942.
  33. Chadick JZ, Zanto TP, Gazzaley A. Structural and functional differences in medial prefrontal cortex underlie distractibility and suppression deficits in ageing. Nat Commun. 2014 Jun 30;5:4223. doi: 10.1038/ncomms5223. PMID: 24979364; PMCID: PMC4088291.
  34. Guevara EE, Hopkins WD, Hof PR, Ely JJ, Bradley BJ, Sherwood CC. Epigenetic ageing of the prefrontal cortex and cerebellum in humans and chimpanzees. Epigenetics. 2022 Jun 2:1-12. doi: 10.1080/15592294.2022.2080993. Epub ahead of print. PMID: 35603816.
  35. Zanto TP, Gazzaley A. Aging of the frontal lobe. Handb Clin Neurol. 2019;163:369-389. doi: 10.1016/B978-0-12-804281-6.00020-3. PMID: 31590742.
  36. Krajcovicova L, Klobusiakova P, Rektorova I. Gray Matter Changes in Parkinson's and Alzheimer's Disease and Relation to Cognition. Curr Neurol Neurosci Rep. 2019 Nov 13;19(11):85. doi: 10.1007/s11910-019-1006-z. PMID: 31720859; PMCID: PMC6854046.
  37. Ding W, Ding LJ, Li FF, Han Y, Mu L. Neurodegeneration and cognition in Parkinson's disease: a review. Eur Rev Med Pharmacol Sci. 2015 Jun;19(12):2275-81. PMID: 26166654.
  38. Frouni I, Kwan C, Belliveau S, Huot P. Cognition and serotonin in Parkinson's disease. Prog Brain Res. 2022;269(1):373-403. doi: 10.1016/bs.pbr.2022.01.013. Epub 2022 Feb 4. PMID: 35248202.
  39. Kim CY, Alcalay RN. Genetic Forms of Parkinson's Disease. Semin Neurol. 2017 Apr;37(2):135-146. doi: 10.1055/s-0037-1601567. Epub 2017 May 16. PMID: 28511254.
  40. Bandres-Ciga S, Diez-Fairen M, Kim JJ, Singleton AB. Genetics of Parkinson's disease: An introspection of its journey towards precision medicine. Neurobiol Dis. 2020 Apr;137:104782. doi: 10.1016/j.nbd.2020.104782. Epub 2020 Jan 25. PMID: 31991247; PMCID: PMC7064061.
  41. Kachergus J, Mata IF, Hulihan M, Taylor JP, Lincoln S, Aasly J, Gibson JM, Ross OA, Lynch T, Wiley J, Payami H, Nutt J, Maraganore DM, Czyzewski K, Styczynska M, Wszolek ZK, Farrer MJ, Toft M. Identification of a novel LRRK2 mutation linked to autosomal dominant parkinsonism: evidence of a common founder across European populations. Am J Hum Genet. 2005 Apr;76(4):672-80. doi: 10.1086/429256. Epub 2005 Feb 22. PMID: 15726496; PMCID: PMC1199304.
  42. Infante J, Rodríguez E, Combarros O, Mateo I, Fontalba A, Pascual J, Oterino A, Polo JM, Leno C, Berciano J. LRRK2 G2019S is a common mutation in Spanish patients with late-onset Parkinson's disease. Neurosci Lett. 2006 Mar 13;395(3):224-6. doi: 10.1016/j.neulet.2005.10.083. Epub 2005 Nov 18. PMID: 16298482.
  43. Aasly JO, Toft M, Fernandez-Mata I, Kachergus J, Hulihan M, White LR, Farrer M. Clinical features of LRRK2-associated Parkinson's disease in central Norway. Ann Neurol. 2005 May;57(5):762-5. doi: 10.1002/ana.20456. PMID: 15852371.
  44. Tan EK, Shen H, Tan LC, Farrer M, Yew K, Chua E, Jamora RD, Puvan K, Puong KY, Zhao Y, Pavanni R, Wong MC, Yih Y, Skipper L, Liu JJ. The G2019S LRRK2 mutation is uncommon in an Asian cohort of Parkinson's disease patients. Neurosci Lett. 2005 Aug 26;384(3):327-9. doi: 10.1016/j.neulet.2005.04.103. PMID: 15955629.
  45. Di Fonzo A, Rohé CF, Ferreira J, Chien HF, Vacca L, Stocchi F, Guedes L, Fabrizio E, Manfredi M, Vanacore N, Goldwurm S, Breedveld G, Sampaio C, Meco G, Barbosa E, Oostra BA, Bonifati V; Italian Parkinson Genetics Network. A frequent LRRK2 gene mutation associated with autosomal dominant Parkinson's disease. Lancet. 2005 Jan 29-Feb 4;365(9457):412-5. doi: 10.1016/S0140-6736(05)17829-5. PMID: 15680456.
  46. West AB, Moore DJ, Biskup S, Bugayenko A, Smith WW, Ross CA, Dawson VL, Dawson TM. Parkinson's disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity. Proc Natl Acad Sci U S A. 2005 Nov 15;102(46):16842-7. doi: 10.1073/pnas.0507360102. Epub 2005 Nov 3. PMID: 16269541; PMCID: PMC1283829.
  47. Jaleel M, Nichols RJ, Deak M, Campbell DG, Gillardon F, Knebel A, Alessi DR. LRRK2 phosphorylates moesin at threo-nine-558: characterization of how Parkinson's disease mutants affect kinase activity. Biochem J. 2007 Jul 15;405(2):307-17. doi: 10.1042/BJ20070209. PMID: 17447891; PMCID: PMC1904520.
  48. Stafa K, Trancikova A, Webber PJ, Glauser L, West AB, Moore DJ. GTPase activity and neuronal toxicity of Parkinson's dis-ease-associated LRRK2 is regulated by ArfGAP1. PLoS Genet. 2012;8(2):e1002526. doi: 10.1371/journal.pgen.1002526. Epub 2012 Feb 9. PMID: 22363216; PMCID: PMC3280333.
  49. Dusonchet J, Li H, Guillily M, Liu M, Stafa K, Derada Troletti C, Boon JY, Saha S, Glauser L, Mamais A, Citro A, Youmans KL, Liu L, Schneider BL, Aebischer P, Yue Z, Bandopadhyay R, Glicksman MA, Moore DJ, Collins JJ, Wolozin B. A Parkinson's disease gene regulatory network identifies the signaling protein RGS2 as a modulator of LRRK2 activity and neuronal toxicity. Hum Mol Genet. 2014 Sep 15;23(18):4887-905. doi: 10.1093/hmg/ddu202. Epub 2014 May 2. PMID: 24794857; PMCID: PMC4140468.
  50. Smith WW, Pei Z, Jiang H, Dawson VL, Dawson TM, Ross CA. Kinase activity of mutant LRRK2 mediates neuronal toxicity. Nat Neurosci. 2006 Oct;9(10):1231-3. doi: 10.1038/nn1776. Epub 2006 Sep 17. PMID: 16980962.
  51. Rosenbusch KE, Kortholt A. Activation Mechanism of LRRK2 and Its Cellular Functions in Parkinson's Disease. Parkinsons Dis. 2016;2016:7351985. doi: 10.1155/2016/7351985. Epub 2016 May 12. PMID: 27293958; PMCID: PMC4880697.
  52. Cronin KD, Ge D, Manninger P, Linnertz C, Rossoshek A, Orrison BM, Bernard DJ, El-Agnaf OM, Schlossmacher MG, Nuss-baum RL, Chiba-Falek O. Expansion of the Parkinson disease-associated SNCA-Rep1 allele upregulates human al-pha-synuclein in transgenic mouse brain. Hum Mol Genet. 2009 Sep 1;18(17):3274-85. doi: 10.1093/hmg/ddp265. Epub 2009 Jun 4. PMID: 19498036; PMCID: PMC2722989.
  53. Kasten M, Klein C. The many faces of alpha-synuclein mutations. Mov Disord. 2013 Jun;28(6):697-701. doi: 10.1002/mds.25499. Epub 2013 May 14. PMID: 23674458.
  54. Singleton AB, Farrer M, Johnson J, Singleton A, Hague S, Kachergus J, Hulihan M, Peuralinna T, Dutra A, Nussbaum R, Lincoln S, Crawley A, Hanson M, Maraganore D, Adler C, Cookson MR, Muenter M, Baptista M, Miller D, Blancato J, Hardy J, Gwinn-Hardy K. alpha-Synuclein locus triplication causes Parkinson's disease. Science. 2003 Oct 31;302(5646):841. doi: 10.1126/science.1090278. PMID: 14593171.Nishioka K, Ross OA, Ishii K, Kachergus JM, Ishiwata K, Kitagawa M, Kono S, Obi T, Mizoguchi K, Inoue Y, Imai H, Takanashi M, Mizuno Y, Farrer MJ, Hattori N. Expanding the clinical phenotype of SNCA duplication carriers. Mov Disord. 2009 Sep 15;24(12):1811-9. doi: 10.1002/mds.22682. PMID: 19562770.
  55. Ahn TB, Kim SY, Kim JY, Park SS, Lee DS, Min HJ, Kim YK, Kim SE, Kim JM, Kim HJ, Cho J, Jeon BS. alpha-Synuclein gene duplication is present in sporadic Parkinson disease. Neurology. 2008 Jan 1;70(1):43-9. doi: 10.1212/01.wnl.0000271080.53272.c7. Epub 2007 Jul 11. PMID: 17625105.
  56. Ibáñez P, Bonnet AM, Débarges B, Lohmann E, Tison F, Pollak P, Agid Y, Dürr A, Brice A. Causal relation between al-pha-synuclein gene duplication and familial Parkinson's disease. Lancet. 2004 Sep 25-Oct 1;364(9440):1169-71. doi: 10.1016/S0140-6736(04)17104-3. PMID: 15451225.
  57. Maraganore DM, de Andrade M, Elbaz A, Farrer MJ, Ioannidis JP, Krüger R, Rocca WA, Schneider NK, Lesnick TG, Lincoln SJ, Hulihan MM, Aasly JO, Ashizawa T, Chartier-Harlin MC, Checkoway H, Ferrarese C, Hadjigeorgiou G, Hattori N, Kawakami H, Lambert JC, Lynch T, Mellick GD, Papapetropoulos S, Parsian A, Quattrone A, Riess O, Tan EK, Van Broeckhoven C; Genetic Epidemiology of Parkinson's Disease (GEO-PD) Consortium. Collaborative analysis of alpha-synuclein gene promoter variability and Parkinson disease. JAMA. 2006 Aug 9;296(6):661-70. doi: 10.1001/jama.296.6.661. PMID: 16896109.
  58. Li X, Gehring K. Structural studies of parkin and sacsin: Mitochondrial dynamics in neurodegenerative diseases. Mov Disord. 2015 Oct;30(12):1610-9. doi: 10.1002/mds.26357. Epub 2015 Sep 11. PMID: 26359782.
  59. Inzelberg R, Cohen OS, Aharon-Peretz J, Schlesinger I, Gershoni-Baruch R, Djaldetti R, Nitsan Z, Ephraty L, Tunkel O, Kozlova E, Inzelberg L, Kaplan N, Fixler Mehr T, Mory A, Dagan E, Schechtman E, Friedman E, Hassin-Baer S. The LRRK2 G2019S mutation is associated with Parkinson disease and concomitant non-skin cancers. Neurology. 2012 Mar 13;78(11):781-6. doi: 10.1212/WNL.0b013e318249f673. Epub 2012 Feb 8. PMID: 22323743.
  60. Valente EM, Bentivoglio AR, Dixon PH, Ferraris A, Ialongo T, Frontali M, Albanese A, Wood NW. Localization of a novel locus for autosomal recessive early-onset parkinsonism, PARK6, on human chromosome 1p35-p36. Am J Hum Genet. 2001 Apr;68(4):895-900. doi: 10.1086/319522. Epub 2001 Mar 7. PMID: 11254447; PMCID: PMC1275643.
  61. Truban D, Hou X, Caulfield TR, Fiesel FC, Springer W. PINK1, Parkin, and Mitochondrial Quality Control: What can we Learn about Parkinson's Disease Pathobiology? J Parkinsons Dis. 2017;7(1):13-29. doi: 10.3233/JPD-160989. PMID: 27911343; PMCID: PMC5302033.

Most read articles by the same author(s)

1 2 > >>