The prevalence of neurodegenerative diseases is on the rise due to the aging global population, leading to a significant increase in cognitive impairments characterized by progressive neuronal degeneration. Within these impairments, both spatial and non-spatial attention deficits have emerged as critical features that profoundly impact the quality of life. Spatial attention, crucial for the selective processing of sensory information, involves intricate neural networks, including the parietal and frontal lobes. This review, based on a narrative literature review, synthesizes current research on the neuropathological foundations of spatial and non-spatial attention deficits in various neurodegenerative diseases.
References
Chi H, Chang HY, Sang TK. Neuronal Cell Death Mechanisms in Major Neurodegenerative Diseases. Int J Mol Sci. 2018 Oct 9;19(10):3082. doi: 10.3390/ijms19103082. PMID: 30304824; PMCID: PMC6213751.
Cannon JR, Greenamyre JT. The role of environmental exposures in neurodegeneration and neurodegenerative diseases. Toxicol Sci. 2011 Dec;124(2):225-50. doi: 10.1093/toxsci/kfr239. Epub 2011 Sep 13. PMID: 21914720; PMCID: PMC3216414.
Tang Y, Le W. Differential Roles of M1 and M2 Microglia in Neurodegenerative Diseases. Mol Neurobiol. 2016 Mar;53(2):1181-1194. doi: 10.1007/s12035-014-9070-5. Epub 2015 Jan 20. PMID: 25598354.
Erkkinen MG, Kim MO, Geschwind MD. Clinical Neurology and Epidemiology of the Major Neurodegenerative Diseases. Cold Spring Harb Perspect Biol. 2018 Apr 2;10(4):a033118. doi: 10.1101/cshperspect.a033118. PMID: 28716886; PMCID: PMC5880171.
Bublak P, Redel P, Finke K. Spatial and non-spatial attention deficits in neurodegenerative diseases: assessment based on Bundesen's theory of visual attention (TVA). Restor Neurol Neurosci. 2006;24(4-6):287-301. PMID: 17119305.
Kalanthroff E, Naparstek S, Henik A. Spatial processing in adults with attention deficit hyperactivity disorder. Neuropsy-chology. 2013 Sep;27(5):546-55. doi: 10.1037/a0033655. Epub 2013 Aug 12. PMID: 23937479.
Gottlieb J, Snyder LH. Spatial and non-spatial functions of the parietal cortex. Curr Opin Neurobiol. 2010 Dec;20(6):731-40. doi: 10.1016/j.conb.2010.09.015. Epub 2010 Nov 1. PMID: 21050743; PMCID: PMC3072821.
Van Vleet TM, Hoang-duc AK, DeGutis J, Robertson LC. Modulation of non-spatial attention and the global/local processing bias. Neuropsychologia. 2011 Feb;49(3):352-9. doi: 10.1016/j.neuropsychologia.2010.11.021. Epub 2010 Nov 24. PMID: 21110989; PMCID: PMC3488348.
Kim S, Beck MR. Non-spatial context-driven search. Atten Percept Psychophys. 2020 Aug;82(6):2876-2892. doi: 10.3758/s13414-020-02063-6. PMID: 32435974.
Finke K, Schneider WX, Redel P, Dose M, Kerkhoff G, Müller HJ, Bublak P. The capacity of attention and simultaneous per-ception of objects: a group study of Huntington's disease patients. Neuropsychologia. 2007 Nov 5;45(14):3272-84. doi: 10.1016/j.neuropsychologia.2007.06.006. Epub 2007 Jun 26. PMID: 17681560.
Tiwari S, Atluri V, Kaushik A, Yndart A, Nair M. Alzheimer's disease: pathogenesis, diagnostics, and therapeutics. Int J Nanomedicine. 2019 Jul 19;14:5541-5554. doi: 10.2147/IJN.S200490. PMID: 31410002; PMCID: PMC6650620.
Vasquez BP, Buck BH, Black SE, Leibovitch FS, Lobaugh NJ, Caldwell CB, Behrmann M. Visual attention deficits in Alzheimer's disease: relationship to HMPAO SPECT cortical hypoperfusion. Neuropsychologia. 2011 Jun;49(7):1741-50. doi: 10.1016/j.neuropsychologia.2011.02.052. Epub 2011 Mar 4. PMID: 21377483.
Feter N, Leite JS, Dumith SC, Rombaldi AJ. Ten-year trends in hospitalizations due to Alzheimer's disease in Brazil: a na-tional-based study. Cad Saude Publica. 2021 Aug 30;37(8):e00073320. doi: 10.1590/0102-311X00073320. PMID: 34495090.
Garre-Olmo J. Epidemiología de la enfermedad de Alzheimer y otras demencias. Rev Neurol 2018;66 (11):377-386.
Liesi E. Hebert, Jennifer Weuve, Paul A. Scherr, Denis A. Evans
Neurology May 2013, 80 (19) 1778-1783; DOI:10.1212/WNL.0b013e31828726f5.
Smirmaul BPC, Arena R. The Urgent Need to Sit Less and Move More During the COVID-19 Pandemic. J Cardiopulm Rehabil Prev. 2020 Sep;40(5):287-289. doi: 10.1097/HCR.0000000000000538. PMID: 32796490; PMCID: PMC7720811.
Danilo R. Silva, André O. Werneck, Deborah C. Malta, Paulo R.B. Souza-Júnior, Luiz O. Azevedo, Marilisa B.A. Barros, Célia L. Szwarcwald. Incidence of physical inactivity and excessive screen time during the first wave of the COVID-19 pandemic in Brazil: what are the most affected population groups. Annals of Epidemiology, Volume 62, 2021,Pages 30-35.
Tremblay, M.S., Aubert, S., Barnes, J.D. et al. Sedentary Behavior Research Network (SBRN) – Terminology Consensus Project process and oiutcome. Int J Behav Nutr Phys Act 14, 75 (2017). https://doi.org/10.1186/s12966-017-0525-8.
Wang, C., Holtzman, D.M. Bidirectional relationship between sleep and Alzheimer’s disease: role of amyloid, tau, and other factors.Neuropsychopharmacol. 45, 104–120 (2020). https://doi.org/10.1038/s41386-019-0478-5.
Tarasoff-Conway, J., Carare, R., Osorio, R. et al. Clearance systems in the brain—implications for Alzheimer disease. Nat Rev Neurol 11, 457–470 (2015). https://doi.org/10.1038/nrneurol.2015.119.
Pitanga, Francisco José Gondim, Beck, Carmem Cristina e Pitanga, Cristiano Penas Seara. Atividade Física e Redução do Comportamento Sedentário durante a Pandemia do Coronavírus. Arquivos Brasileiros de Cardiologia [online]. 2020, v. 114, n. 6 [Acessado 25 Agosto 2022] , pp. 1058-1060. Disponível em: <https://doi.org/10.36660/abc.20200238>. Epub 03 Jul 2020. ISSN 1678-4170. https://doi.org/10.36660/abc.20200238.
Muhammed Bishir, Abid Bhat, Musthafa Mohamed Essa, Okobi Ekpo, Amadi O. Ihunwo, Vishnu Priya Veeraraghavan, Surapaneni Krishna Mohan, Arehally M. Mahalakshmi, Bipul Ray, Sunanda Tuladhar, Sulie Chang, Saravana Babu Chid-ambaram, Meena Kishore Sakharkar, Gilles J. Guillemin, M. Walid Qoronfleh, David M. Ojcius, "Sleep Deprivation and Neurological Disorders", BioMed Research International, vol. 2020, Article ID 5764017, 19 pages, 2020.https://doi.org/10.1155/2020/5764017.
Zuanazzi A, Noppeney U. The Intricate Interplay of Spatial Attention and Expectation: a Multisensory Perspective. Multisens Res. 2020 Mar 17;33(4-5):383-416. doi: 10.1163/22134808-20201482. PMID: 31940592.
Lamb DG, Balavage KT, Williamson JB, Knight LA, Heilman KM. The Influence of Focused and Sustained Spatial Attention on the Allocation of Spatial Attention. J Int Neuropsychol Soc. 2019 Jan;25(1):65-71. doi: 10.1017/S1355617718000802. Epub 2018 Nov 29. PMID: 30486914; PMCID: PMC6349482.
Vanunu Y, Hotaling JM, Le Pelley ME, Newell BR. How top-down and bottom-up attention modulate risky choice. Proc Natl Acad Sci U S A. 2021 Sep 28;118(39):e2025646118. doi: 10.1073/pnas.2025646118. PMID: 34561303; PMCID: PMC8488801.
Kim J, Hwang E, Shin H, Gil YH, Lee J. Top-down, bottom-up, and history-driven processing of multisensory attentional cues in intellectual disability: An experimental study in virtual reality. PLoS One. 2021 Dec 21;16(12):e0261298. doi: 10.1371/journal.pone.0261298. PMID: 34932566; PMCID: PMC8691646.
Yuan Z, Chen H, Ding Z, Li Z, Song Y, Li X. The Modulating Effect of Top-down Attention on the Optimal Pre-target Onset Oscillatory States of Bottom-up Attention. Neuroscience. 2021 Jul 1;466:186-195. doi: 10.1016/j.neuroscience.2021.03.036. Epub 2021 Apr 15. PMID: 33865944.
Banerjee S, Grover S, Sridharan D. Unraveling Causal Mechanisms of Top-Down and Bottom-Up Visuospatial Attention with Non-invasive Brain Stimulation. J Indian Inst Sci. 2019 Jun 14;97(4):451-475. doi: 10.1007/S41745-017-0046-0. Epub 2017 Dec 6. PMID: 31231154; PMCID: PMC6588534.
Chen YC, Spence C. Hemispheric asymmetry: Looking for a novel signature of the modulation of spatial attention in mul-tisensory processing. Psychon Bull Rev. 2017 Jun;24(3):690-707. doi: 10.3758/s13423-016-1154-y. PMID: 27586002; PMCID: PMC5486865.
Cojan Y, Saj A, Vuilleumier P. Brain Substrates for Distinct Spatial Processing Components Contributing to Hemineglect in Humans. Brain Sci. 2021 Nov 29;11(12):1584. doi: 10.3390/brainsci11121584. PMID: 34942886; PMCID: PMC8699043.
Park YM, Park J, Baek JH, Kim SI, Kim IY, Kang JK, Jang DP. Differences in theta coherence between spatial and nonspatial attention using intracranial electroencephalographic signals in humans. Hum Brain Mapp. 2019 Jun 1;40(8):2336-2346. doi: 10.1002/hbm.24526. Epub 2019 Jan 15. PMID: 30648326; PMCID: PMC6865857.
Lunven M, Bartolomeo P. Attention and spatial cognition: Neural and anatomical substrates of visual neglect. Ann Phys Rehabil Med. 2017 Jun;60(3):124-129. doi: 10.1016/j.rehab.2016.01.004. Epub 2016 Feb 10. PMID: 26874577.
Araki T, Ikegaya Y, Koyama R. The effects of microglia- and astrocyte-derived factors on neurogenesis in health and disease. Eur J Neurosci. 2021 Sep;54(5):5880-5901. doi: 10.1111/ejn.14969. Epub 2020 Sep 21. PMID: 32920880; PMCID: PMC8451940.
Hwang EJ, Sato TR, Sato TK. A Canonical Scheme of Bottom-Up and Top-Down Information Flows in the Frontoparietal Network. Front Neural Circuits. 2021 Aug 12;15:691314. doi: 10.3389/fncir.2021.691314. PMID: 34475815; PMCID: PMC8406690.
Jimenez-Sanchez M, Licitra F, Underwood BR, Rubinsztein DC. Huntington's Disease: Mechanisms of Pathogenesis and Therapeutic Strategies. Cold Spring Harb Perspect Med. 2017 Jul 5;7(7):a024240. doi: 10.1101/cshperspect.a024240. PMID: 27940602; PMCID: PMC5495055.
Park GY, Kim T, Park J, Lee EM, Ryu HU, Kim SI, Kim IY, Kang JK, Jang DP, Husain M. Neural correlates of spatial and nonspatial attention determined using intracranial electroencephalographic signals in humans. Hum Brain Mapp. 2016 Aug;37(8):3041-54. doi: 10.1002/hbm.23225. Epub 2016 Apr 29. PMID: 27125904; PMCID: PMC5025724.
Park YM, Park J, Baek JH, Kim SI, Kim IY, Kang JK, Jang DP. Differences in theta coherence between spatial and nonspatial attention using intracranial electroencephalographic signals in humans. Hum Brain Mapp. 2019 Jun 1;40(8):2336-2346. doi: 10.1002/hbm.24526. Epub 2019 Jan 15. PMID: 30648326; PMCID: PMC6865857.
Degutis JM, Van Vleet TM. Tonic and phasic alertness training: a novel behavioral therapy to improve spatial and non-spatial attention in patients with hemispatial neglect. Front Hum Neurosci. 2010 Aug 24;4:60. doi: 10.3389/fnhum.2010.00060. PMID: 20838474; PMCID: PMC2936932.
Williams LJ, Kernot J, Hillier SL, Loetscher T. Spatial Neglect Subtypes, Definitions and Assessment Tools: A Scoping Review. Front Neurol. 2021 Nov 24;12:742365. doi: 10.3389/fneur.2021.742365. PMID: 34899565; PMCID: PMC8653914.
Bublak P, Redel P, Finke K. Spatial and non-spatial attention deficits in neurodegenerative diseases: assessment based on Bundesen's theory of visual attention (TVA). Restor Neurol Neurosci. 2006;24(4-6):287-301. PMID: 17119305.
Tales A, Snowden RJ, Haworth J, Wilcock G. Abnormal spatial and non-spatial cueing effects in mild cognitive impairment and Alzheimer's disease. Neurocase. 2005 Feb;11(1):85-92. doi: 10.1080/13554790490896983. PMID: 15804929.
Zhang L, Du Rietz E, Kuja-Halkola R, Dobrosavljevic M, Johnell K, Pedersen NL, Larsson H, Chang Z. Atten-tion-deficit/hyperactivity disorder and Alzheimer's disease and any dementia: A multi-generation cohort study in Sweden. Alzheimers Dement. 2022 Jun;18(6):1155-1163. doi: 10.1002/alz.12462. Epub 2021 Sep 9. PMID: 34498801.
Colvin MK, Sherman JC. Considering learning disabilities and attention-deficit hyperactivity disorder when assessing for neurodegenerative disease. Neurol Clin Pract. 2020 Dec;10(6):520-526. doi: 10.1212/CPJ.0000000000000799. PMID: 33520414; PMCID: PMC7837443.
Heimler B, Amedi A. Are critical periods reversible in the adult brain? Insights on cortical specializations based on sensory deprivation studies. Neurosci Biobehav Rev. 2020 Sep;116:494-507. doi: 10.1016/j.neubiorev.2020.06.034. Epub 2020 Jul 8. PMID: 32652097.
Kraft A, Irlbacher K, Finke K, Kaufmann C, Kehrer S, Liebermann D, Bundesen C, Brandt SA. Dissociable spatial and non-spatial attentional deficits after circumscribed thalamic stroke. Cortex. 2015 Mar;64:327-42. doi: 10.1016/j.cortex.2014.12.005. Epub 2014 Dec 30. PMID: 25597524.
Huddleston WE, Swanson AN, Lytle JR, Aleksandrowicz MS. Distinct saccade planning and endogenous visuospatial attention maps in parietal cortex: A basis for functional differences in sensory and motor attention. Cortex. 2021 Apr;137:292-304. doi: 10.1016/j.cortex.2021.01.009. Epub 2021 Feb 5. PMID: 33676176; PMCID: PMC8043996.
Villarreal S, Linnavuo M, Sepponen R, Vuori O, Bonato M, Jokinen H, Hietanen M. Unilateral Stroke: Computer-based As-sessment Uncovers Non-Lateralized and Contralesional Visuoattentive Deficits. J Int Neuropsychol Soc. 2021 Nov;27(10):959-969. doi: 10.1017/S1355617720001393. Epub 2021 Feb 8. PMID: 33551012.
Maria Victória Rocha Fontenele Maia ,
Victor Hugo Melo Freitas,
Lara Oliveira da Nóbrega ,
Lucas Olímpio Coimbra ,
Aline Moreira Lócio,
Fairane Sousa Duarte,
Rodrigo Mariano Ribeiro,
Victor Monteiro Mororó,
Sara Diógenes Peixoto de Medeiros ,
Amanda Rebouças Bezerra de Menezes ,
Rafaella Iughetti da Costa,
Luciano Barroso de Albuquerque-Filho,
Lara Maria Fujita Vieira Lima,
Camilla Costa Sallem,
Camilla Teixeira Pinheiro Gusmão,
Yuri Borges Morais,
Luiz da Silva Aldir,
Tiago Antoniol,
Isaac Dantas Sales Pimentel,
Natalia Marinho Porto Lima ,
Júlio César Claudino dos Santos,
Beyond behavioral changes in semantic dementia: principal hurdles on the road to the clinic
,
Brazilian Journal of Clinical Medicine and Review: Vol. 1 No. 3 (2023): July/September - 2023